In probability theory, more specifically the study of random matrices, the circular law is the distribution of eigenvalues of an n × n random matrix with independent and identically distributed entries in the limit n → ∞.
It asserts that for any sequence of random n × n matrices whose entries are independent and identically distributed random variables, all with mean zero and variance equal to 1/n, the limiting spectral distribution is the uniform distribution over the unit disc.
Let be a sequence of n × n matrix ensembles whose entries are i.i.d. copies of a complex random variable x with mean 0 and variance 1. Let denote the eigenvalues of . Define the empirical spectral measure of as