*** Welcome to piglix ***

Circle of confusion


In optics, a circle of confusion is an optical spot caused by a cone of light rays from a lens not coming to a perfect focus when imaging a point source. It is also known as disk of confusion, circle of indistinctness, blur circle, or blur spot.

In photography, the circle of confusion (CoC) is used to determine the depth of field, the part of an image that is acceptably sharp. A standard value of CoC is often associated with each image format, but the most appropriate value depends on visual acuity, viewing conditions, and the amount of enlargement. Usages in context include maximum permissible circle of confusion, circle of confusion diameter limit, and the circle of confusion criterion.

Real lenses do not focus all rays perfectly, so that even at best focus, a point is imaged as a spot rather than a point. The smallest such spot that a lens can produce is often referred to as the circle of least confusion.

Two important uses of this term and concept need to be distinguished:

In idealized ray optics, where rays are assumed to converge to a point when perfectly focused, the shape of a defocus blur spot from a lens with a circular aperture is a hard-edged circle of light. A more general blur spot has soft edges due to diffraction and aberrations (Stokseth 1969, 1317; Merklinger 1992, 45–46), and may be non-circular due to the aperture shape. Therefore, the diameter concept needs to be carefully defined in order to be meaningful. Suitable definitions often use the concept of encircled energy, the fraction of the total optical energy of the spot that is within the specified diameter. Values of the fraction (e.g., 80%, 90%) vary with application.

In photography, the circle of confusion diameter limit (“CoC”) for the final image is often defined as the largest blur spot that will still be perceived by the human eye as a point.

With this definition, the CoC in the original image (the image on the film or electronic sensor) depends on three factors:

The common values for CoC may not be applicable if reproduction or viewing conditions differ significantly from those assumed in determining those values. If the original image will be given greater enlargement, or viewed at a closer distance, then a smaller CoC will be required. All three factors above are accommodated with this formula:


...
Wikipedia

...