In computability theory, the Church–Turing thesis (also known as computability thesis, the Turing–Church thesis, the Church–Turing conjecture, Church's thesis, Church's conjecture, and Turing's thesis) is a hypothesis about the nature of computable functions. It states that a function on the natural numbers is computable by a human being following an algorithm, ignoring resource limitations, if and only if it is computable by a Turing machine. The thesis is named after American mathematician Alonzo Church and the British mathematician Alan Turing. Before the precise definition of computable function, mathematicians often used the informal term effectively calculable to describe functions that are computable by paper-and-pencil methods. In the 1930s, several independent attempts were made to formalize the notion of computability:
Church and Turing proved that these three formally defined classes of computable functions coincide: a function is λ-computable if and only if it is Turing computable if and only if it is general recursive. This has led mathematicians and computer scientists to believe that the concept of computability is accurately characterized by these three equivalent processes. Other formal attempts to characterize computability have subsequently strengthened this belief (see below).
On the other hand, the Church–Turing thesis states that the above three formally-defined classes of computable functions coincide with the informal notion of an effectively calculable function. Since, as an informal notion, the concept of effective calculability does not have a formal definition, the thesis, although it has near-universal acceptance, cannot be formally proven.
Since its inception, variations on the original thesis have arisen, including statements about what can physically be realized by a computer in our universe (Physical Church-Turing Thesis) and what can be efficiently computed (Complexity-Theoretic Church–Turing Thesis). These variations are not due to Church or Turing, but arise from later work in complexity theory and digital physics. The thesis also has implications for the philosophy of mind (see below).