A choropleth map (from Greek χῶρος ("area/region") + πλῆθος ("multitude")) is a thematic map in which areas are shaded or patterned in proportion to the measurement of the statistical variable being displayed on the map, such as population density or per-capita income. Choropleth maps can also be used to display nominal data such as country names on a world map or most popular car model per region.
The choropleth map provides an easy way to visualize how a measurement varies across a geographic area or it shows the level of variability within a region.
The earliest known choropleth map was created in 1826 by Baron Pierre Charles Dupin. They were first called "cartes teintées" (coloured map in French). The term "choroplethe map" was introduced in 1938 by the geographer John Kirtland Wright in "Problems in Population Mapping".
Choropleth maps are based on statistical data aggregated over previously defined regions (e.g., counties), in contrast to area-class and isarithmic maps, in which region boundaries are defined by data patterns. Thus, where defined regions are important to a discussion, as in an election map divided by electoral regions, choropleths are preferred.
Where real-world patterns may not conform to the regions discussed, issues such as the ecological fallacy and the modifiable areal unit problem (MAUP) can lead to major misinterpretations, and other techniques are preferable.
The dasymetric technique can be thought of as a compromise approach in many situations. Broadly speaking, choropleths represent two types of data: spatially extensive or spatially intensive.
Another common error in choropleths is the use of raw data values to represent magnitude rather than normalized values to produce a map of densities. This is problematic because the eye naturally integrates over areas of the same color, giving undue prominence to larger polygons of moderate magnitude and minimizing the significance of smaller polygons with high magnitudes. Compare the circled features in the maps at right.
Equal intervals, quantiles, geometric progressions, standard deviation, Jenks natural breaks optimization Head/tail Breaks