*** Welcome to piglix ***

Chen-Stein method


Stein's method is a general method in probability theory to obtain bounds on the distance between two probability distributions with respect to a probability metric. It was introduced by Charles Stein, who first published it in 1972, to obtain a bound between the distribution of a sum of -dependent sequence of random variables and a standard normal distribution in the Kolmogorov (uniform) metric and hence to prove not only a central limit theorem, but also bounds on the rates of convergence for the given metric.

At the end of the 1960s, unsatisfied with the by-then known proofs of a specific central limit theorem, Charles Stein developed a new way of proving the theorem for his statistics lecture. His seminal paper was presented in 1970 at the sixth Berkeley Symposium and published in the corresponding proceedings.

Later, his Ph.D. student Louis Chen Hsiao Yun modified the method so as to obtain approximation results for the Poisson distribution, therefore the Stein method applied to the problem of Poisson approximation is often referred to as the Stein-Chen method.


...
Wikipedia

...