*** Welcome to piglix ***

Chemisorption


Chemisorption is a kind of adsorption which involves a chemical reaction between the surface and the adsorbate. New chemical bonds are generated at the adsorbant surface. Examples include macroscopic phenomena that can be very obvious, like corrosion, and subtler effects associated with heterogeneous catalysis. The strong interaction between the adsorbate and the substrate surface creates new types of electronic bonds.

In contrast with chemisorption is physisorption, which leaves the chemical species of the adsorbate and surface intact. It is conventionally accepted that the energetic threshold separating the binding energy of "physisorption" from that of "chemisorption" is about 0.5 eV per adsorbed species.

Due to specificity, the nature of chemisorption can greatly differ, depending on the chemical identity and the surface structure.

An important example of chemisorption is in heterogeneous catalysis which involves molecules reacting with each other via the formation of chemisorbed intermediates. After the chemisorbed species combine (by forming bonds with each other) the product desorbs from the surface.

Self-assembled monolayers (SAMs) are formed by chemisorbing reactive reagents with metal surfaces. A famous example involves thiols (RS-H) adsorbing onto the surface of gold. This process forms strong Au-SR bonds and releases H2. The densely packed SR groups protect the surface.

As an instance of adsorption, chemisorption follows the adsorption process. The first stage is for the adsorbate particle to come into contact with the surface. The particle needs to be trapped onto the surface by not possessing enough energy to leave the gas-surface potential well. If it elastically collides with the surface, then it would return to the bulk gas. If it loses enough momentum through an inelastic collision, then it “sticks” onto the surface, forming a precursor state bonded to the surface by weak forces, similar to physisorption. The particle diffuses on the surface until it finds a deep chemisorption potential well. Then it reacts with the surface or simply desorbs after enough energy and time.


...
Wikipedia

...