In chemistry, a chemical transport reaction describes a process for purification and crystallization of non-volatile solids. The process is also responsible for certain aspects of mineral growth from the effluent of volcanoes. The technique is distinct from chemical vapor deposition, which usually entails decomposition of molecular precursors (e.g. SiH4 → Si + 2H2) and which gives conformal coatings.
The technique, which was popularized by Schäfer, entails the reversible conversion of nonvolatile elements and chemical compounds into volatile derivatives. The volatile derivative migrates throughout a sealed reactor, typically a sealed and evacuated glass tube heated in a tube furnace. Because the tube is under a temperature gradient, the volatile derivative reverts to the parent solid and the transport agent is released at the end opposite to which it originated (see next section). The transport agent is thus catalytic. The technique requires that the two ends of the tube (which contains the sample to be crystallized) be maintained at different temperatures. So-called two-zone tube furnaces are employed for this purpose. The method derives from the Van Arkel de Boer process which was used for the purification of titanium and vanadium and uses iodine as the transport agent.
Transport reactions are classified according to the thermodynamics of the reaction between the solid and the transporting agent. When the reaction is exothermic, then the solid of interest is transported from the cooler end (which can be quite hot) of the reactor to a hot end, where the equilibrium constant is less favorable and the crystals grow. The reaction of molybdenum dioxide with the transporting agent iodine is an exothermic process, thus the MoO2 migrates from the cooler end (700 °C) to the hotter end (900 °C):