A chemical clock or oscillating reaction is a complex mixture of reacting chemical compounds in which the concentration of one or more components exhibits periodic changes, or where sudden property changes occur after a predictable induction time. They are a class of reactions that serve as an example of non-equilibrium thermodynamics, resulting in the establishment of a nonlinear oscillator. The reactions are theoretically important in that they show that chemical reactions do not have to be dominated by equilibrium thermodynamic behavior.
In cases where one of the reagents has a visible color, crossing a concentration threshold can lead to an abrupt color change in a reproducible time lapse. Examples of clock reactions are the Belousov-Zhabotinsky reaction, the Briggs-Rauscher reaction, the Bray-Liebhafsky reaction and the iodine clock reaction. The concentration of products and reactants of oscillatory chemical systems can be approximated in terms of damped oscillations.
The earliest scientific evidence that such reactions can oscillate was met with extreme scepticism. In 1828, G.T. Fechner published a report of oscillations in a chemical system. He described an electrochemical cell that produced an oscillating current. In 1899, W. Ostwald observed that the rate of chromium dissolution in acid periodically increased and decreased. Both of these systems were heterogeneous and it was believed then, and through much of the last century, that homogeneous oscillating systems were nonexistent. While theoretical discussions date back to around 1910, the systematic study of oscillating chemical reactions and of the broader field of non-linear chemical dynamics did not become well established until the mid-1970s.