*** Welcome to piglix ***

Chemical indicator


A pH indicator is a halochromic chemical compound added in small amounts to a solution so the pH (acidity or basicity) of the solution can be determined visually. Hence, a pH indicator is a chemical detector for hydronium ions (H3O+) or hydrogen ions (H+) in the Arrhenius model. Normally, the indicator causes the color of the solution to change depending on the pH. Indicators can also show change in other physical properties; for example, olfactory indicators show change in their odor. The pH value of a neutral solution is 7.0. Solutions with a pH value below 7.0 are considered acidic and solutions with pH value above 7.0 are basic (alkaline). As most naturally occurring organic compounds are weak protolytes, carboxylic acids and amines, pH indicators find many applications in biology and analytical chemistry. Moreover, pH indicators form one of the three main types of indicator compounds used in chemical analysis. For the quantitative analysis of metal cations, the use of complexometric indicators is preferred, whereas the third compound class, the redox indicators, are used in titrations involving a redox reaction as the basis of the analysis.

In and of themselves, pH indicators are frequently weak acids or weak bases. The general reaction scheme of a pH indicator can be formulated as:

Here, HInd stands for the acid form and Ind for the conjugate base of the indicator. The ratio of these determines the color of the solution and connects the color to the pH value. pH indicators that are weak protolytes, the Henderson–Hasselbalch equation for them can be written as:

The equation, derived from the acidity constant, states that when pH equals the pKa value of the indicator, both species are present in a 1:1 ratio. If pH is above the pKa value, the concentration of the conjugate base is greater than the concentration of the acid, and the color associated with the conjugate base dominates. If pH is below the pKa value, the converse is true.


...
Wikipedia

...