*** Welcome to piglix ***

Character theory


In mathematics, more specifically in group theory, the character of a group representation is a function on the group that associates to each group element the trace of the corresponding matrix. The character carries the essential information about the representation in a more condensed form. Georg Frobenius initially developed representation theory of finite groups entirely based on the characters, and without any explicit matrix realization of representations themselves. This is possible because a complex representation of a finite group is determined (up to isomorphism) by its character. The situation with representations over a field of positive characteristic, so-called "modular representations", is more delicate, but Richard Brauer developed a powerful theory of characters in this case as well. Many deep theorems on the structure of finite groups use characters of modular representations.

Characters of irreducible representations encode many important properties of a group and can thus be used to study its structure. Character theory is an essential tool in the classification of finite simple groups. Close to half of the proof of the Feit–Thompson theorem involves intricate calculations with character values. Easier, but still essential, results that use character theory include the Burnside theorem (a purely group-theoretic proof of the Burnside theorem has since been found, but that proof came over half a century after Burnside's original proof), and a theorem of Richard Brauer and Michio Suzuki stating that a finite simple group cannot have a generalized quaternion group as its Sylow 2-subgroup.


...
Wikipedia

...