In geometry, chamfering or edge-truncation is a topological operator that modifies one polyhedron into another. It is similar to expansion, moving faces apart and outward, but also maintain the original vertices. For polyhedra, this operation adds a new hexagonal face in place of each original edge.
In Conway polyhedron notation it is represented by the letter c. A polyhedron with e edges will have a chamfered form containing 2e new vertices, 3e new edges, and e new hexagonal faces.
The chamfer operation applied in series creates progressively larger polyhedra with new hexagonal faces replacing edges from the previous one. The chamfer operator transforms GP(m,n) to GP(2m,2n).
A regular polyhedron, GP(1,0), create a Goldberg polyhedra sequence: GP(1,0), GP(2,0), GP(4,0), GP(8,0), GP(16,0)...
The truncated octahedron or truncated icosahedron, GP(1,1) creates a Goldberg sequence: GP(1,1), GP(2,2), GP(4,4), GP(8,8)....
A truncated tetrakis hexahedron or pentakis dodecahedron, GP(3,0), creates a Goldberg sequence: GP(3,0), GP(6,0), GP(12,0)...
Like the expansion operation, chamfer can be applied to any dimension. For polygons, it triples the number of vertices. For polychora, new cells are created around the original edges, The cells are prisms, containing two copies of the original face, with pyramids augmented onto the prism sides.
The chamfered tetrahedron (or alternate truncated cube) is a convex polyhedron constructed as an alternately truncated cube or chamfer operation on a tetrahedron, replacing its 6 edges with hexagons.
It is the Goldberg polyhedron GIII(2,0), containing triangular and hexagonal faces.