A cermet is a composite material composed of ceramic (cer) and metallic (met) materials.
A cermet is ideally designed to have the optimal properties of both a ceramic, such as high temperature resistance and hardness, and those of a metal, such as the ability to undergo plastic deformation. The metal is used as a binder for an oxide, boride, or carbide. Generally, the metallic elements used are nickel, molybdenum, and cobalt. Depending on the physical structure of the material, cermets can also be metal matrix composites, but cermets are usually less than 20% metal by volume.
Cermets are used in the manufacture of resistors (especially potentiometers), capacitors, and other electronic components which may experience high temperature.
Cermets are used instead of tungsten carbide in saws and other brazed tools due to their superior wear and corrosion properties. Titanium nitride (TiN), titanium carbonitride (TiCN), titanium carbide (TiC) and similar can be brazed like tungsten carbide if properly prepared however they require special handling during grinding.
More complex materials, known as Cermet 2 or Cermet II, are being utilized because they enable considerably longer life in cutting tools, while still brazing and grinding like tungsten carbide.
Some types of cermets are also being considered for use as spacecraft shielding as they resist the high velocity impacts of micrometeoroids and orbital debris much more effectively than more traditional spacecraft materials such as aluminum and other metals.