*** Welcome to piglix ***

Cephalopod intelligence


Cephalopod intelligence has an important comparative aspect in the understanding of intelligence because it relies on a nervous system fundamentally different from that of vertebrates. The cephalopod class of molluscs, particularly the Coleoidea subclass (cuttlefish, squid, and octopuses), are thought to be the most intelligent invertebrates and an important example of advanced cognitive evolution in animals.

The scope of cephalopod intelligence is controversial, complicated by the challenges of studying these elusive and fundamentally different creatures. In spite of this, the existence of impressive spatial learning capacity, navigational abilities, and predatory techniques in cephalopods is widely acknowledged.

Unlike most other molluscs, all cephalopods are active predators (with the possible exception of the bigfin squid and vampire squid). Their requirement to locate and capture their prey has been a probable driving force behind the development of their intelligence, uniquely advanced among molluscs.

The Humboldt squid hunts schools of fish, showing extraordinary cooperation and communication in its hunting techniques. This is the first observation of such behaviour in invertebrates.

Crabs, the staple food source of most octopus species, present significant challenges with their powerful pincers and their potential to exhaust the cephalopod's respiration system from a prolonged pursuit. In the face of these challenges, octopuses will instead seek out lobster traps and steal the bait inside. They are also known to climb aboard fishing boats and hide in the containers that hold dead or dying crabs.

Dexterity, an ability essential for tool use and manipulation, is also found in cephalopods. The highly sensitive suction cups and prehensile arms of octopuses, squid, and cuttlefish are as effective at holding and manipulating objects as the human hand. However, unlike vertebrates, the motor skills of octopuses do not seem to depend upon mapping their body within their brains, as the ability to organize complex movements is not thought to be linked to particular arms.


...
Wikipedia

...