In statistics, a **central tendency** (or **measure of central tendency**) is a central or typical value for a probability distribution. It may also be called a **center** or **location** of the distribution. Colloquially, measures of central tendency are often called *averages.* The term *central tendency* dates from the late 1920s.

The most common measures of central tendency are the arithmetic mean, the median and the mode. A central tendency can be calculated for either a finite set of values or for a theoretical distribution, such as the normal distribution. Occasionally authors use central tendency to denote "the tendency of quantitative data to cluster around some central value."

The central tendency of a distribution is typically contrasted with its *dispersion* or *variability*; dispersion and central tendency are the often characterized properties of distributions. Analysts may judge whether data has a strong or a weak central tendency based on its dispersion.

The following may be applied to one-dimensional data. Depending on the circumstances, it may be appropriate to transform the data before calculating a central tendency. Examples are squaring the values or taking logarithms. Whether a transformation is appropriate and what it should be, depend heavily on the data being analyzed.

Any of the above may be applied to each dimension of multi-dimensional data, but the results may not be invariant to rotations of the multi-dimensional space. In addition, there is the

The Quadratic mean (often known as the root mean square) is useful in engineering, but is not often used in statistics. This is because it is not a good indicator of the center of the distribution when the distribution includes negative values.

Several measures of central tendency can be characterized as solving a variational problem, in the sense of the calculus of variations, namely minimizing variation from the center. That is, given a measure of statistical dispersion, one asks for a measure of central tendency that minimizes variation: such that variation from the center is minimal among all choices of center. In a quip, "dispersion precedes location". In the sense of *L*^{p} spaces, the correspondence is:

...

Wikipedia

...