*** Welcome to piglix ***

Cavalieri's quadrature formula


In calculus, Cavalieri's quadrature formula, named for 17th-century Italian mathematician Bonaventura Cavalieri, is the integral

and generalizations thereof. This is the definite integral form; the indefinite integral form is:

There are additional forms, listed below. Together with the linearity of the integral, this formula allows one to compute the integrals of all polynomials.

The term "quadrature" is a traditional term for area; the integral is geometrically interpreted as the area under the curve y = xn. Traditionally important cases are y = x2, the quadrature of the parabola, known in antiquity, and y = 1/x, the quadrature of the hyperbola, whose value is a logarithm.

For negative values of n (negative powers of x), there is a singularity at x = 0, and thus the definite integral is based at 1, rather than 0, yielding:

Further, for negative fractional (non-integer) values of n, the power xn is not well-defined, hence the indefinite integral is only defined for positive x. However for n a negative integer the power xn is defined for all non-zero x, and the indefinite integrals and definite integrals are defined, and can be computed via a symmetry argument, replacing x by −x, and basing the negative definite integral at −1.

Over the complex numbers the definite integral (for negative values of n and x) can be defined via contour integration, but then depends on choice of path, specifically winding number – the geometric issue is that the function defines a covering space with a singularity at 0.


...
Wikipedia

...