Causal inference is the process of drawing a conclusion about a causal connection based on the conditions of the occurrence of an effect. The main difference between causal inference and inference of association is that the former analyzes the response of the effect variable when the cause is changed. The science of why things occur is called etiology.
Inferring the cause of something has been described as
Epidemiological studies employ different epidemiological methods of collecting and measuring evidence of risk factors and effect and different ways of measuring association between the two. A hypothesis is formulated, and then tested with statistical methods (see Statistical hypothesis testing). It is statistical inference that helps decide if data are due to chance, also called random variation, or indeed correlated and if so how strongly.
Common frameworks for causal inference are structural equation modeling and the Rubin causal model.
Epidemiology studies patterns of health and disease in defined populations of living beings in order to infer causes and effects. An association between an exposure to a putative risk factor and a disease may be suggestive of, but is not equivalent to causality or correlation does not imply causation. Historically, Koch's postulates have been used since the 19th century to decide if a microorganism was the cause of a disease. In the 20th century the Bradford Hill criteria, described in 1965 have been used to assess causality of variables outside microbiology, although even these criteria are not exclusive ways to determine causality.