*** Welcome to piglix ***

Cauchy-Binet formula


In linear algebra, the Cauchy–Binet formula, named after Augustin-Louis Cauchy and Jacques Philippe Marie Binet, is an identity for the determinant of the product of two rectangular matrices of transpose shapes (so that the product is well-defined and square). It generalizes the statement that the determinant of a product of square matrices is equal to the product of their determinants. The formula is valid for matrices with the entries from any commutative ring.

Let A be an m×n matrix and B an n×m matrix. Write [n] for the set { 1, ..., n }, and for the set of m-combinations of [n] (i.e., subsets of size m; there are of them). For , write A[m],S for the m×m matrix whose columns are the columns of A at indices from S, and BS,[m] for the m×m matrix whose rows are the rows of B at indices from S. The Cauchy–Binet formula then states


...
Wikipedia

...