*** Welcome to piglix ***

Cast Iron


Cast iron is a group of iron-carbon alloys with a carbon content greater than 2%. Its usefulness derives from its relatively low melting temperature. The alloy constituents affect its colour when fractured: white cast iron has carbide impurities which allow cracks to pass straight through; grey cast iron has graphite flakes which deflect a passing crack and initiate countless new cracks as the material breaks; ductile cast iron has spherical graphite "nodules" which stop the crack from further progressing.

Carbon (C) ranging from 1.8–4 wt%, and silicon (Si) 1–3 wt% are the main alloying elements of cast iron. Iron alloys with less carbon content are known as steel. While this technically makes the Fe–C–Si system ternary, the principle of cast iron solidification can be understood from the simpler binary iron–carbon phase diagram. Since the compositions of most cast irons are around the eutectic point (lowest liquid point) of the iron–carbon system, the melting temperatures usually range from 1,150 to 1,200 °C (2,100 to 2,190 °F), which is about 300 °C (540 °F) lower than the melting point of pure iron.

Cast iron tends to be brittle, except for malleable cast irons. With its relatively low melting point, good fluidity, castability, excellent machinability, resistance to deformation and wear resistance, cast irons have become an engineering material with a wide range of applications and are used in pipes, machines and automotive industry parts, such as cylinder heads (declining usage), cylinder blocks and gearbox cases (declining usage). It is resistant to destruction and weakening by oxidation.


...
Wikipedia

...