CarterCopter | |
---|---|
Role | Experimental compound autogyro |
Manufacturer | Carter Aviation Technologies |
First flight | 24 September 1998 |
Status | Crashed 17 June 2005 |
Number built | 1 |
Developed into | Carter PAV |
![]() |
|
![]() |
|
![]() |
![]() |
The CarterCopter is an experimental compound autogyro developed by Carter Aviation Technologies in the United States to demonstrate slowed rotor technology. On 17 June 2005, the CarterCopter became the first rotorcraft to achieve mu-1 (μ=1), an equal ratio of airspeed to rotor tip speed, but crashed on the next flight and has been inoperable since. It is being replaced by the Carter Personal Air Vehicle.
The CarterCopter is a pusher configuration autogyro with wings and a twin boom tail, intended as a prototype and a technology demonstrator. The rotor is a two-bladed design weighted with 55 pounds (25 kg) depleted uranium at each tip, and it is mounted on a tilting mast, allowing the wing to stay at optimum wing efficiency at all speeds. It is an all-composite design with a hull pressurized up to 0.69 bar.
The tricycle undercarriage is retractable, and has a large travel to allow for landing at up to 20 ft/sec without bounce. The aircraft had been modified and rebuilt after an accident (a gear-up landing) in 2003.NASA had funded $1 million of the development using three research grants, and the aircraft managed to accomplish at least one of NASA's five goals.
The CarterCopter concept is a gyrocopter with an unusually stiff, relatively heavy rotor, supplemented with conventional wings. At low speed, the vehicle flies as a gyrocopter, and can pre-spin the rotor for a vertical takeoff and very brief hover (about 5 seconds), and can land more or less vertically. Several technical challenges make flying a slow rotor difficult, but rotor stability is achieved through the combination of the rotor tip weights' location ahead of the blade center line (forward center of gravity) and the center of lift aft of the blade center line. At high speed (above about 100 mph) the aircraft flies mostly using the fixed wings, with the rotor simply windmilling. The rotor spins with a tip speed below airspeed, which means that the retreating blade flies completely stalled. On a helicopter this would cause massive lift dissymmetry and insoluble control issues but the fixed wings keep the aircraft in the air and stable.