*** Welcome to piglix ***

Cartan geometry


In the mathematical field of differential geometry, a Cartan connection is a flexible generalization of the notion of an affine connection. It may also be regarded as a specialization of the general concept of a principal connection, in which the geometry of the principal bundle is tied to the geometry of the base manifold using a solder form. Cartan connections describe the geometry of manifolds modelled on homogeneous spaces.

The theory of Cartan connections was developed by Élie Cartan, as part of (and a way of formulating) his method of moving frames (repère mobile). The main idea is to develop a suitable notion of the connection forms and curvature using moving frames adapted to the particular geometrical problem at hand. For instance, in relativity or Riemannian geometry, orthonormal frames are used to obtain a description of the Levi-Civita connection as a Cartan connection. For Lie groups, Maurer–Cartan frames are used to view the Maurer–Cartan form of the group as a Cartan connection.

Cartan reformulated the differential geometry of (pseudo) Riemannian geometry, as well as the differential geometry of manifolds equipped with some non-metric structure, including Lie groups and homogeneous spaces. The term Cartan connection most often refers to Cartan's formulation of a (pseudo-)Riemannian, affine, projective, or conformal connection. Although these are the most commonly used Cartan connections, they are special cases of a more general concept.


...
Wikipedia

...