In mathematics, Carmichael's totient function conjecture concerns the multiplicity of values of Euler's totient function φ(n), which counts the number of integers less than and coprime to n. It states that, for every n there is at least one other integer m ≠ n such that φ(m) = φ(n). Robert Carmichael first stated this conjecture in 1907, but as a theorem rather than as a conjecture. However, his proof was faulty and in 1922 he retracted his claim and stated the conjecture as an open problem.
The totient function φ(n) is equal to 2 when n is one of the three values 3, 4, and 6. Thus, if we take any one of these three values as n, then either of the other two values can be used as the m for which φ(m) = φ(n).
Similarly, the totient is equal to 4 when n is one of the four values 5, 8, 10, and 12, and it is equal to 6 when n is one of the four values 7, 9, 14, and 18. In each case, there is more than one value of n having the same value of φ(n).
The conjecture states that this phenomenon of repeated values holds for every n.
There are very high lower bounds for Carmichael's conjecture that are relatively easy to determine. Carmichael himself proved that any counterexample to his conjecture (that is, a value n such that φ(n) is different from the totients of all other numbers) must be at least 1037, and Victor Klee extended this result to 10400. A lower bound of was given by Schlafly and Wagon, and a lower bound of was determined by Kevin Ford in 1998.