*** Welcome to piglix ***

Cardinal assignment


In set theory, the concept of cardinality is significantly developable without recourse to actually defining cardinal numbers as objects in the theory itself (this is in fact a viewpoint taken by Frege; Frege cardinals are basically equivalence classes on the entire universe of sets, by equinumerosity). The concepts are developed by defining equinumerosity in terms of functions and the concepts of one-to-one and onto (injectivity and surjectivity); this gives us a pseudo-ordering relation

on the whole universe by size. It is not a true partial ordering because antisymmetry need not hold: if both and , it is true by the Cantor–Bernstein–Schroeder theorem that i.e. A and B are equinumerous, but they do not have to be literally equal (see isomorphism). That at least one of and holds turns out to be equivalent to the axiom of choice.


...
Wikipedia

...