The carbon–fluorine bond is a polar covalent bond between carbon and fluorine that is a component of all organofluorine compounds. It is the fourth strongest single bond in organic chemistry—behind the B-F single bond, Si-F single bond and the H-F single bond, and relatively short—due to its partial ionic character. The bond also strengthens and shortens as more fluorines are added to the same carbon on a chemical compound. As such, fluoroalkanes like tetrafluoromethane (carbon tetrafluoride) are some of the most unreactive organic compounds.
The high electronegativity of fluorine (4.0 for F vs. 2.5 for carbon) gives the carbon–fluorine bond a significant polarity/dipole moment. The electron density is concentrated around the fluorine, leaving the carbon relatively electron poor. This introduces ionic character to the bond through partial charges (Cδ+—Fδ−). The partial charges on the fluorine and carbon are attractive, contributing to the unusual bond strength of the carbon–fluorine bond. The bond is labeled as "the strongest in organic chemistry," because fluorine forms the strongest single bond to carbon. Carbon–fluorine bonds can have a bond dissociation energy (BDE) of up to 544 kJ/mol. The BDE (strength of the bond) is higher than other carbon–halogen and carbon–hydrogen bonds. For example, the molecule represented by CH3X has a BDE of 115 kcal/mol for carbon–fluorine while values of 104.9, 83.7, 72.1, and 57.6 kcal/mol represent carbon–X bonds to hydrogen, chlorine, bromine, and iodine, respectively.