Carbohydrate loading, commonly referred to as carb-loading or carbo-loading, is a strategy used by endurance athletes, such as marathon runners, to maximize the storage of glycogen (or energy) in the muscles and liver.
Carbohydrate loading is also used in healthcare to optimise the condition of patients prior to colorectal surgery.
Carbohydrate loading is generally recommended for endurance events lasting longer than 90 minutes. Many endurance athletes prefer foods with low glycemic indices for carbo-loading due to their minimal effect on serum glucose levels. Low glycemic foods commonly include fruits, vegetables, whole wheat pasta, and grains. Many marathoners and triathlon participants have large pasta dinners the night before the race. Since muscles also use amino acids extensively when functioning within aerobic limits, meals should also include adequate protein. Large portions before a race can, however, decrease race-day performance if the digestive system has not had the time to process the food regimen.
Research in the 1980s led to a modified carbo-loading regimen that eliminates the depletion phase, instead calling for increased carbohydrate intake (to about 70% of total calories) and decreased training for three days before the event. Most athletes now follow this modified regimen and it is recommended by many coaches. Some athletes still follow the original carbo-loading regimen.
A new carbo-loading regimen developed by scientists at the University of Western Australia calls for a normal diet with light training until the day before the race. On the day before the race, the athlete performs a very short, extremely high-intensity workout (such as a few minutes of sprinting) then consumes 12 g of carbohydrate per kilogram of lean mass over the next 24 hours. The regimen resulted in a 90% increase in glycogen storage when compared to before the carbo-load, which is comparable to or higher than the results achieved with other 2 day – 6 day carbo-loading regimes.
Carbohydrate ingestion within 2 hours before aerobic exercise triggers elevated levels of insulin in the blood which may dramatically decrease serum glucose levels. This can limit aerobic performance, especially in events lasting longer than 60 minutes. This is known as transient or reactive hypoglycemia, and can be a limiting factor in elite athletes. Individuals susceptible to hypoglycemia are especially at risk for elevated insulin responses and thus will likely suffer from performance-limiting transient hypoglycemia if they do not follow the correct regimen.