*** Welcome to piglix ***

Cantor normal form


In the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation. Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set which represents the operation or by using transfinite recursion. Cantor normal form provides a standardized way of writing ordinals. The so-called "natural" arithmetical operations retain commutativity at the expense of continuity. Interpreted as nimbers, ordinals are also subject to nimber arithmetic operations.

The union of two disjoint well-ordered sets S and T can be well-ordered. The order-type of that union is the ordinal which results from adding the order-types of S and T. If two well-ordered sets are not already disjoint, then they can be replaced by order-isomorphic disjoint sets, e.g. replace S by {0} × S and T by {1} × T. This way, the well-ordered set S is written "to the left" of the well-ordered set T, meaning one defines an order on S T in which every element of S is smaller than every element of T. The sets S and T themselves keep the ordering they already have. This addition of the order-types is associative and generalizes the addition of natural numbers.

The first transfinite ordinal is ω, the set of all natural numbers. For example, the ordinal ω + ω is obtained by two copies of the natural numbers ordered in the usual fashion and the second copy completely to the right of the first. Writing 0' < 1' < 2' < ... for the second copy, ω + ω looks like


...
Wikipedia

...