*** Welcome to piglix ***

Cantor's first uncountability proof


Georg Cantor's first set theory article was published in 1874 and contains the first theorems of transfinite set theory, which studies infinite sets and their properties. One of these theorems is "Cantor's revolutionary discovery" that the set of all real numbers is uncountably, rather than countably, infinite. This theorem is proved using Cantor's first uncountability proof, which differs from the more familiar proof using his diagonal argument. The title of the article, "On a Property of the Collection of All Real Algebraic Numbers" ("Ueber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen"), refers to its first theorem: the set of real algebraic numbers is countable.

Cantor's article also contains a proof of the existence of transcendental numbers. As early as 1930, mathematicians have disagreed on whether this proof is constructive or non-constructive. Books as recent as 2014 and 2015 indicate that this disagreement has not been resolved. Since Cantor's proof either constructs transcendental numbers or does not, an analysis of his article can determine whether his proof is constructive or non-constructive. Cantor's correspondence with Richard Dedekind shows the development of his ideas and reveals that he had a choice between two proofs, one that uses the uncountability of the real numbers and one that does not.

Historians of mathematics have examined Cantor's article and the circumstances in which it was written. For example, they have discovered that Cantor was advised to leave out his uncountability theorem in the article he submitted; he added it during proofreading. They have traced this and other facts about the article to the influence of Karl Weierstrass and Leopold Kronecker. Historians have also studied Dedekind's contributions to the article, including his contributions to the theorem on the countability of the real algebraic numbers. In addition, they have looked at the article's legacy—namely, the impact of the uncountability theorem and the concept of countability on mathematics.


...
Wikipedia

...