*** Welcome to piglix ***

Candidate key


In the relational model of databases, a candidate key of a relation is a minimal superkey for that relation; that is, a set of attributes such that:

The constituent attributes are called prime attributes. Conversely, an attribute that does not occur in ANY candidate key is called a non-prime attribute.

Since a relation contains no duplicate tuples, the set of all its attributes is a superkey if NULL values are not used. It follows that every relation will have at least one candidate key.

The candidate keys of a relation tell us all the possible ways we can identify its tuples. As such they are an important concept for the design of database schema.

The definition of candidate keys can be illustrated with the following (abstract) example. Consider a relation variable (relvar) R with attributes (A, B, C, D) that has only the following two legal values r1 and r2:

Here r2 differs from r1 only in the A and D values of the last tuple.

For r1 the following sets have the uniqueness property, i.e., there are no two distinct tuples in the instance with the same values for the attributes in the set:

For r2 the uniqueness property holds for the following sets;

Since superkeys of a relvar are those sets of attributes that have the uniqueness property for all legal values of that relvar and because we assume that r1 and r2 are all the legal values that R can take, we can determine the set of superkeys of R by taking the intersection of the two lists:

Finally we need to select those sets for which there is no proper subset in the list, which are in this case:

These are indeed the candidate keys of relvar R.

We have to consider all the relations that might be assigned to a relvar to determine whether a certain set of attributes is a candidate key. For example, if we had considered only r1 then we would have concluded that {A,B} is a candidate key, which is incorrect. However, we might be able to conclude from such a relation that a certain set is not a candidate key, because that set does not have the uniqueness property (example {A,D} for r1). Note that the existence of a proper subset of a set that has the uniqueness property cannot in general be used as evidence that the superset is not a candidate key. In particular, note that in the case of an empty relation, every subset of the heading has the uniqueness property, including the empty set.


...
Wikipedia

...