A camera lens (also known as photographic lens or photographic objective) is an optical lens or assembly of lenses used in conjunction with a camera body and mechanism to make images of objects either on photographic film or on other media capable of storing an image chemically or electronically.
There is no major difference in principle between a lens used for a still camera, a video camera, a telescope, a microscope, or other apparatus, but the detailed design and construction are different. A lens might be permanently fixed to a camera, or it might be interchangeable with lenses of different focal lengths, apertures, and other properties.
While in principle a simple convex lens will suffice, in practice a compound lens made up of a number of optical lens elements is required to correct (as much as possible) the many optical aberrations that arise. Some aberrations will be present in any lens system. It is the job of the lens designer to balance these and produce a design that is suitable for photographic use and possibly mass production.
Typical rectilinear lenses can be thought of as "improved" pinhole "lenses". As shown, a pinhole "lens" is simply a small aperture that blocks most rays of light, ideally selecting one ray to the object for each point on the image sensor. Pinhole lenses have a few severe limitations:
Practical lenses can be thought of as an answer to the question "how can a pinhole lens be modified to admit more light and give a smaller spot size?" A first step is to put a simple convex lens at the pinhole with a focal length equal to the distance to the film plane (assuming the camera will take pictures of distant objects ). This allows the pinhole to be opened up significantly (below right) because a thin convex lens bends light rays in proportion to their distance to the axis of the lens, with rays striking the center of the lens passing straight through. The geometry is almost the same as with a simple pinhole lens, but rather than being illuminated by single rays of light, each image point is illuminated by a focused "pencil" of light rays.