*** Welcome to piglix ***

Calabi conjecture


In mathematics, the Calabi conjecture was a conjecture about the existence of certain "nice" Riemannian metrics on certain complex manifolds, made by Eugenio Calabi (1954, 1957) and proved by Shing-Tung Yau (1977, 1978). Yau received the Fields Medal in 1982 in part for this proof.

The Calabi conjecture states that a compact Kähler manifold has a unique Kähler metric in the same class whose Ricci form is any given 2-form representing the first Chern class. In particular if the first Chern class vanishes there is a unique Kähler metric in the same class with vanishing Ricci curvature; these are called Calabi–Yau manifolds.

More formally, the Calabi conjecture states:

The Calabi conjecture is closely related to the question of which Kähler manifolds have Kähler–Einstein metrics.

A conjecture closely related to the Calabi conjecture states that if a compact Kähler variety has a negative, zero, or positive first Chern class then it has a Kähler–Einstein metric in the same class as its Kähler metric, unique up to rescaling. This was proved for negative first Chern classes independently by Thierry Aubin and Shing-Tung Yau in 1976. When the Chern class is zero it was proved by Yau as an easy consequence of the Calabi conjecture.

It was disproved for positive first Chern classes by Yau, who observed that the complex projective plane blown up at 2 points has no Kähler–Einstein metric and so is a counterexample. Also even when Kähler–Einstein metric exists it need not be unique. There has been a lot of further work on the positive first Chern class case. A necessary condition for the existence of a Kähler–Einstein metric is that the Lie algebra of holomorphic vector fields is reductive. Yau conjectured that when the first Chern class is positive, a Kähler variety has a Kähler–Einstein metric if and only if it is stable in the sense of geometric invariant theory.


...
Wikipedia

...