In algebraic geometry, a Calabi–Yau manifold, also known as a Calabi–Yau space, is a particular type of manifold which has properties, such as Ricci flatness, yielding applications in theoretical physics. Particularly in superstring theory, the extra dimensions of spacetime are sometimes conjectured to take the form of a 6-dimensional Calabi–Yau manifold, which led to the idea of mirror symmetry.
Calabi–Yau manifolds are complex manifolds that are generalizations of K3 surfaces in any number of complex dimensions (i.e. any even number of real dimensions). They were originally defined as compact Kähler manifolds with a vanishing first Chern class and a Ricci-flat metric, though many other similar but inequivalent definitions are sometimes used.
The motivational definition given by Yau is of a compact Kähler manifold with a vanishing first Chern class, that is also Ricci flat.
There are many other definitions of a Calabi–Yau manifold used by different authors, some inequivalent. This section summarizes some of the more common definitions and the relations between them.
A Calabi–Yau n-fold or Calabi–Yau manifold of (complex) dimension n is sometimes defined as a compact n-dimensional Kähler manifold M satisfying one of the following equivalent conditions:
These conditions imply that the first integral Chern class c1(M) of M vanishes, but the converse is not true. The simplest examples where this happens are hyperelliptic surfaces, finite quotients of a complex torus of complex dimension 2, which have vanishing first integral Chern class but non-trivial canonical bundle.