In theoretical computer science, the CAP theorem, also named Brewer's theorem after computer scientist Eric Brewer, states that it is impossible for a distributed data store to simultaneously provide more than two out of the following three guarantees:
In other words, the CAP Theorem states that in the presence of a network partition, one has to choose between consistency and availability. Note that consistency as defined in the CAP Theorem is quite different from the consistency guaranteed in ACID database transactions.
No distributed system is safe from network failures, thus network partitioning generally has to be tolerated. In the presence of a partition, one is then left with two options: consistency or availability. When choosing consistency over availability, the system will return an error or a time out if particular information cannot be guaranteed to be up to date due to network partitioning. When choosing availability over consistency, the system will always process the query and try to return the most recent available version of the information, even if it cannot guarantee it is up to date due to network partitioning.
In the absence of network failure – that is, when the distributed system is running normally – both availability and consistency can be satisfied.
CAP is frequently misunderstood as if one had to choose to abandon one of the three guarantees at all times. In fact, the choice is really between consistency and availability for when a partition happens only; at all other times, no trade-off has to be made.
Database systems designed with traditional ACID guarantees in mind such as RDBMS choose consistency over availability, whereas systems designed around the BASE philosophy, common in the NoSQL movement for example, choose availability over consistency.
The PACELC theorem builds on CAP by stating that even in the absence of partitioning, another trade-off between latency and consistency occurs.