*** Welcome to piglix ***

Bursting


Bursting, or burst firing, is an extremely diverse general phenomenon of the activation patterns of neurons in the central nervous system and spinal cord where periods of rapid action potential spiking are followed by G0 phase quiescent periods. Bursting is thought to be important in the operation of robust central pattern generators, the transmission of neural codes, and some neuropathologies such as epilepsy. The study of bursting both directly and in how it takes part in other neural phenomena has been very popular since the beginnings of cellular neuroscience and is closely tied to the fields of neural synchronization, neural coding, plasticity, and attention.

Observed bursts are named by the number of discrete action potentials they are composed of: a doublet is a two-spike burst, a triplet three and a quadruplet four. Neurons that are intrinsically prone to bursting behavior are referred to as bursters and this tendency to burst may be a product of the environment or the phenotype of the cell.

Neurons typically operate by firing single action potential spikes in relative isolation as discrete input postsynaptic potentials combine and drive the membrane potential across the threshold. Bursting can instead occur for many reasons, but neurons can be generally grouped as exhibiting input-driven or intrinsic bursting. Most cells will exhibit bursting if they are driven by a constant, subthreshold input and particular cells which are genotypically prone to bursting (called bursters) have complex feedback systems which will produce bursting patterns with less dependence on input and sometimes even in isolation.


...
Wikipedia

...