*** Welcome to piglix ***

Bunyakovsky's property


In mathematics, an integer-valued polynomial (also known as a numerical polynomial) P(t) is a polynomial whose value P(n) is an integer for every integer n. Every polynomial with integer coefficients is integer-valued, but the converse is not true. For example, the polynomial

takes on integer values whenever t is an integer. That is because one of t and t + 1 must be an even number. (The values this polynomial takes are the triangular numbers.)

Integer-valued polynomials are objects of study in their own right in algebra, and frequently appear in algebraic topology.

The class of integer-valued polynomials was described fully by Pólya (1915). Inside the polynomial ring Q[t] of polynomials with rational number coefficients, the subring of integer-valued polynomials is a free abelian group. It has as basis the polynomials

for k = 0,1,2, ..., i.e., the binomial coefficients. In other words, every integer-valued polynomial can be written as an integer linear combination of binomial coefficients in exactly one way. The proof is by the method of discrete Taylor series: binomial coefficients are integer-valued polynomials, and conversely, the discrete difference of an integer series is an integer series, so the discrete Taylor series of an integer series generated by a polynomial has integer coefficients (and is a finite series).

Integer-valued polynomials may be used effectively to solve questions about fixed divisors of polynomials. For example, the polynomials P with integer coefficients that always take on even number values are just those such that P/2 is integer valued. Those in turn are the polynomials that may be expressed as a linear combination with even integer coefficients of the binomial coefficients.


...
Wikipedia

...