*** Welcome to piglix ***

Buchli drive


The Buchli drive is a transmission system used in electric locomotives. It was named after its inventor, Swiss engineer Jakob Buchli . The drive is a fully spring-loaded drive, in which each floating axle has an individual motor, that is placed in the spring mounted locomotive frame. The weight of the driving motors is completely disconnected from the driving wheels, which are exposed to movement of the rails.

First used in electric locomotives from the 1920s, the Buchli drive made possible the construction of faster and more powerful locomotives that required larger and heavier traction motors. The system minimises the impact on rail tracks due to the reduction in the overall unsprung weight. Although the drive was very successful though the 1930s, it is little used in modern locomotives, having been replaced with smaller, simpler drives that exhibit less imbalance and allow higher speeds.

In a Buchli drive a driven gear wheel is securely fixed to the locomotive frame. Inside this gear wheel are two levers, coupled to gear segments that mesh with one another. The other end of the levers is coupled via universal joints to tension bars, which are then coupled via more universal joints to the driving rail wheel.

Vertical movement of the driving wheel results in the gear segments moving due to the internal mechanism, and the driving wheel can move in a horizontal or vertical direction with respect to the gear wheel, while still transferring the momentum of the gear wheel.

A disadvantage of the drive was the large number of moving parts, which demanded frequent lubrication and careful maintenance. As a result the Buchli drive system was mainly used on express train locomotives, as there were no other drive systems that gave the same performance at high speeds. However, at higher speeds the drive components became unbalanced, causing issues at speeds over 140 km per hour.

The Buchli drive was exported to other rail companies as one sided separate traction motor drive, usually with an inside frame.


...
Wikipedia

...