*** Welcome to piglix ***

Broadcast TV


Broadcast television systems are encoding or formatting standards for the transmission and reception of terrestrial television signals. There were three main analog television systems in use around the world until late 2010s (expected): NTSC, PAL, and SECAM. Now in digital television (DTV), there are four main systems in use around the world: ATSC, DVB, ISDB and DTMB.

All but one analog television system began as black-and-white systems. Each country, faced with local political, technical, and economic issues, adopted a color television system which was grafted onto an existing monochrome system, using gaps in the video spectrum (explained below) to allow color transmission information to fit in the existing channels allotted. The grafting of the color transmission standards onto existing monochrome systems permitted existing monochrome television receivers predating the changeover to color television to continue to be operated as monochrome television. Because of this compatibility requirement, color standards added a second signal to the basic monochrome signal, which carries the color information. The color information is called chrominance with the symbol C, while the black and white information is called the luminance with the symbol Y. Monochrome television receivers only display the luminance, while color receivers process both signals. Though in theory any monochrome system could be adopted to a color system, in practice some of the original monochrome systems proved impractical to adapt to color and were abandoned when the switch to color broadcasting was made. All countries used one of three color systems: NTSC, PAL, or SECAM.

Ignoring color, all television systems work in essentially the same manner. The monochrome image seen by a camera (later, the luminance component of a color image) is divided into horizontal scan lines, some number of which make up a single image or frame. A monochrome image is theoretically continuous, and thus unlimited in horizontal resolution, but to make television practical, a limit had to be placed on the bandwidth of the television signal, which puts an ultimate limit on the horizontal resolution possible. When color was introduced, this necessity of limit became fixed. All analog television systems are interlaced: alternate rows of the frame are transmitted in sequence, followed by the remaining rows in their sequence. Each half of the frame is called a video field, and the rate at which fields are transmitted is one of the fundamental parameters of a video system. It is related to the utility frequency at which the electricity distribution system operates, to avoid flicker resulting from the beat between the television screen deflection system and nearby mains generated magnetic fields. All digital, or "fixed pixel," displays have progressive scanning and must deinterlace an interlaced source. Use of inexpensive deinterlacing hardware is a typical difference between lower- vs. higher-priced flat panel displays (Plasma display, LCD, etc.).


...
Wikipedia

...