*** Welcome to piglix ***

Brake pad


Brake pads are a component of disc brakes used in automotive and other applications. Brake pads are steel backing plates with friction material bound to the surface that faces the disc brake rotor.

Brake pads convert the kinetic energy of the car to thermal energy by friction. Two brake pads are contained in the brake caliper with their friction surfaces facing the rotor. When the brakes are hydraulically applied, the caliper clamps or squeezes the two pads together into the spinning rotor to slow/stop the vehicle. When a brake pad is heated by contact with a rotor, it transfers small amounts of friction material to the disc, turning it dull gray. The brake pad and disc (both now with friction material), then "stick" to each other, providing the friction that stops the vehicle.

In disc brake applications, there are usually two brake pads per disc rotor, held in place and actuated by a caliper affixed to a wheel hub or suspension upright. Although almost all road-going vehicles have only two brake pads per caliper, racing calipers utilize up to six pads, with varying frictional properties in a staggered pattern for optimum performance. Depending on the properties of the material, disc wear rates may vary. The brake pads must usually be replaced regularly (depending on pad material), and most are equipped with a method of alerting the driver when this needs to take place. Some are manufactured with a small central groove whose eventual disappearance through wear indicates that the pad is nearing the end of its service life. Others are made with a thin strip of soft metal in a similar position that when exposed through wear causes the brakes to squeal audibly. Still others have a soft metal tab embedded in the pad material that closes an electric circuit and lights a dashboard warning light when the brake pad gets thin.

Disc brakes offer better stopping performance than comparable drum brakes, including resistance to "brake fade" caused by the overheating of brake components, and are able to recover quickly from immersion (wet brakes are less effective). Unlike a drum brake, the disc brake has no self-servo effect—the braking force is always proportional to the pressure placed on the braking pedal or lever—but many disc brake systems have servo assistance ("Brake Booster") to lessen the driver's pedal effort.


...
Wikipedia

...