In computer science, the Boyer–Moore–Horspool algorithm or Horspool's algorithm is an algorithm for finding substrings in strings. It was published by Nigel Horspool in 1980.
It is a simplification of the Boyer–Moore string search algorithm which is related to the Knuth–Morris–Pratt algorithm. The algorithm trades space for time in order to obtain an average-case complexity of O(n) on random text, although it has O(nm) in the worst case, where the length of the pattern is m and the length of the search string is n.
Like Boyer–Moore, Boyer–Moore–Horspool preprocesses the pattern to produce a table containing, for each symbol in the alphabet, the number of characters that can safely be skipped. The preprocessing phase, in pseudocode, is as follows (for an alphabet of 256 symbols, i.e., bytes):
Pattern search proceeds as follows. The procedure search reports the index of the first occurrence of needle in haystack.
The algorithm performs best with long needle strings, when it consistently hits a non-matching character at or near the final byte of the current position in the haystack and the final byte of the needle does not occur elsewhere within the needle. For instance a 32 byte needle ending in "z" searching through a 255 byte haystack which does not have a 'z' byte in it would take up to 224 byte comparisons.
The best case is the same as for the Boyer–Moore string search algorithm in big O notation, although the constant overhead of initialization and for each loop is less.
The worst case behavior happens when the bad character skip is consistently low (with the lower limit of 1 byte movement) and a large portion of the needle matches the haystack. The bad character skip is only low, on a partial match, when the final character of the needle also occurs elsewhere within the needle, with 1 byte movement happening when the same byte is in both of the last two positions.