*** Welcome to piglix ***

Bott periodicity theorem


In mathematics, the Bott periodicity theorem describes a periodicity in the homotopy groups of classical groups, discovered by Raoul Bott (1957, 1959), which proved to be of foundational significance for much further research, in particular in K-theory of stable complex vector bundles, as well as the stable homotopy groups of spheres. Bott periodicity can be formulated in numerous ways, with the periodicity in question always appearing as a period-2 phenomenon, with respect to dimension, for the theory associated to the unitary group. See for example topological K-theory.

There are corresponding period-8 phenomena for the matching theories, (real) KO-theory and (quaternionic) KSp-theory, associated to the real orthogonal group and the quaternionic symplectic group, respectively. The J-homomorphism is a homomorphism from the homotopy groups of orthogonal groups to stable homotopy groups of spheres, which causes the period 8 Bott periodicity to be visible in the stable homotopy groups of spheres.

The context of Bott periodicity is that the homotopy groups of spheres, which would be expected to play the basic part in algebraic topology by analogy with homology theory, have proved elusive (and the theory is complicated). The subject of stable homotopy theory was conceived as a simplification, by introducing the suspension (smash product with a circle) operation, and seeing what (roughly speaking) remained of homotopy theory once one was allowed to suspend both sides of an equation, as many times as one wished. The stable theory was still hard to compute with, in practice.


...
Wikipedia

...