*** Welcome to piglix ***

Borwein's algorithm


In mathematics, Borwein's algorithm is an algorithm devised by Jonathan and Peter Borwein to calculate the value of 1/π. They devised several other algorithms. They published the book Pi and the AGM – A Study in Analytic Number Theory and Computational Complexity.

Start by setting

Then

Each additional term of the series yields approximately 50 digits. This is an example of a Ramanujan–Sato series.

Start by setting

Then iterate

Then ak converges cubically to 1/π; that is, each iteration approximately triples the number of correct digits.

Start by setting

Then

Each additional term of the partial sum yields approximately 25 digits.

Start by setting

Then iterate

Then ak converges quartically against 1/π; that is, each iteration approximately quadruples the number of correct digits. The algorithm is not self-correcting; each iteration must be performed with the desired number of correct digits for π's final result.

Start by setting

Then iterate

Then pk converges quadraticly to π; that is, each iteration approximately doubles the number of correct digits. The algorithm is not self-correcting; each iteration must be performed with the desired number of correct digits for π's final result.

Start by setting

Then iterate

Then ak converges quintically to 1/π (that is, each iteration approximately quintuples the number of correct digits), and the following condition holds:

Start by setting

Then iterate

Then ak converges nonically to 1/π; that is, each iteration approximately multiplies the number of correct digits by nine.


...
Wikipedia

...