*** Welcome to piglix ***

Borel measurable


In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets (and thus on all Borel sets). Some authors require additional restrictions on the measure, as described below.

Let be a locally compact Hausdorff space, and let be the smallest σ-algebra that contains the open sets of ; this is known as the σ-algebra of Borel sets. A Borel measure is any measure defined on the σ-algebra of Borel sets. Some authors require in addition that is locally compact, meaning that for every compact set . If a Borel measure is both inner regular and outer regular, it is called a regular Borel measure (some authors also require it to be tight). If is both inner regular and locally finite, it is called a Radon measure.


...
Wikipedia

...