The Borda count is a family of single-winner election methods in which voters rank options or candidates in order of preference. The Borda count determines the outcome of a debate or the winner of an election by giving each candidate, for each ballot, a number of points corresponding to the number of candidates ranked lower. Once all votes have been counted the option or candidate with the most points is the winner. Because it tends to elect broadly-acceptable options or candidates, rather than those preferred by a majority, the Borda count is often described as a consensus-based voting system rather than a majoritarian one.
The Modified Borda Count is used for decision-making. For multi-winner elections, especially when proportional representation is important, the quota Borda system is used.
The Borda count was developed independently several times, as early as 1435 by Nicholas of Cusa, but is named for the 18th-century French mathematician and political scientist Jean-Charles de Borda, who devised the system in 1770. It is currently used to elect members of the Parliament of Nauru and two ethnic minority members of the National Assembly of Slovenia, in modified forms to determine which candidates are elected to the party list seats in Icelandic parliamentary elections, and for selecting presidential election candidates in Kiribati. It is also used throughout the world by various private organizations and competitions.
The Borda count is a preferential, or ranked, voting system; the voter ranks the list of candidates in order of preference. So, for example, the voter gives a 1 to their most preferred candidate, a 2 to their second most preferred, and so on. In this respect, it is the same as elections under systems such as instant-runoff voting, the single transferable vote or Condorcet methods.