The Bolshoi simulation, run in 2010 on the Pleiades supercomputer at the NASA Ames Research Center, was the most accurate cosmological simulation to that date of the evolution of the large-scale structure of the universe. The Bolshoi simulation used the now-standard ΛCDM model of the universe and the WMAP five-year and seven-year cosmological parameters from NASA's Wilkinson Microwave Anisotropy Probe team. "The principal purpose of the Bolshoi simulation is to compute and model the evolution of dark matter halos, thereby rendering the invisible visible for astronomers to study, and to predict visible structure that astronomers can seek to observe." “Bolshoi” is a Russian word meaning “big.”
The first two of a series of research papers describing Bolshoi and its implications were published in 2011 in the Astrophysical Journal. The first data release of Bolshoi outputs has been made publicly available to the world’s astronomers and astrophysicists. The data include output from the Bolshoi simulation and from the BigBolshoi, or MultiDark, simulation of a volume 64 times that of Bolshoi. The Bolshoi-Planck simulation, with the same resolution as Bolshoi, was run in 2013 on the Pleiades supercomputer using the Planck satellite team's cosmological parameters released in March 2013. The Bolshoi-Planck simulation is currently being analyzed in preparation for publication and distribution of its results in 2014.
Joel R. Primack’s team at the University of California, Santa Cruz, partnered with Anatoly Klypin’s group at New Mexico State University, in Las Cruces to run and analyze the Bolshoi simulations. Further analysis and comparison with observations by Risa Wechsler’s group at Stanford and others are reflected in the papers based on the Bolshoi simulations.