A blazar is a very compact quasar (quasi-stellar radio source) associated with a presumed supermassive black hole at the center of an active, giant elliptical galaxy. Blazars are among the most energetic phenomena in the universe and are an important topic in extragalactic astronomy.
Blazars are members of a larger group of active galaxies that host active galactic nuclei (AGN). A few rare objects may be "intermediate blazars" that appear to have a mixture of properties from both optically violent variable (OVV) quasars and BL Lac objects. The name "blazar" was originally coined in 1978 by astronomer Edward Spiegel to denote the combination of these two classes.
Blazars emit a relativistic jet that is pointing in the general direction of the Earth. The jet's path corresponds with our line of sight, which accounts for the rapid variability and compact features of both types of blazars. Many blazars have apparent superluminal features within the first few parsecs of their jets, probably due to relativistic shock fronts.
The generally accepted picture is that OVV quasars are intrinsically powerful radio galaxies while BL Lac objects are intrinsically weak radio galaxies. In both cases the host galaxies are giant ellipticals.
Alternative models, for example, gravitational lensing, may account for a few observations of some blazars which are not consistent with the general properties.
Blazars, like all AGN, are thought to be ultimately powered by material falling onto a supermassive black hole at the center of the host galaxy. Gas, dust and the occasional star are captured and spiral into this central black hole creating a hot accretion disk which generates enormous amounts of energy in the form of photons, electrons, positrons and other elementary particles. This region is quite small, approximately 10−3parsecs in size.