*** Welcome to piglix ***

Bismuth oxynitrate


Bismuth oxynitrate is the name applied to a number of compounds that contain Bi3+, nitrate ions and oxide ions and which can be considered as compounds formed from Bi2O3, N2O5 and H2O. Other names for bismuth oxynitrate include bismuth subnitrate and bismuthyl nitrate. In older texts bismuth oxynitrate is often simply described as BiONO3. Bismuth oxynitrate was once called magisterium bismuti or bismutum subnitricum, and was used as a white pigment, in beauty care, and as a gentle disinfectant for internal and external use.

Bismuth oxynitrate is commercially available as Bi5O(OH)9(NO3)4 (CAS number: 1304-85-4) or as BiONO3·H2O (CAS Number 13595-83-0).

Some compounds have been fully characterised with single crystal studies and found to contain the octahedral [Bi6Ox(OH)8−x](10-x)+ cation. There is indirect evidence that either the octahedral cation Bi6O4(OH)46+ or the octahedral cation Bi6(OH)126+ is present in aqueous solution following the polymerisation of Bi(H2O)83+, the Bi3+ ion present in acidic solutions. The ion Bi6O4(OH)46+ is found in the perchlorate compound Bi6O4(OH)4ClO4·7H2O and is isoelectronic with the octahedral Sn6O4(OH)4 cluster found in the hydrate of tin(II) oxide, 3SnO·H2O. The compounds that contain this are:-

The compound Bi6O5(OH)3(NO3)5.3H2O(equivalent to 6Bi2O3.5N2O5.9H2O) also contains the octahedral units but this time they are joined to form {[Bi6O5(OH)3]5+}2.

Additionally some oxynitrates have layer structures (a common motif also found in bismuth(III) oxyhalides):-

The octahedral ion has 6 Bi3+ ions at the corners of an octahedron. There is no covalent bond between the Bi atoms, they are held in position by bridging O2− and OH anions, one at the centre of each of the eight triangular faces, bridging three Bi ions. The Bi ions are essentially four coordinate and are at the apex of a flat square pyramid. An ab initio theoretical study of the hydration mechanism of Bi3+ and the structure concludes that the lone pairs on the Bi3+ ions are stereochemically active.


...
Wikipedia

...