Biostratigraphy is the branch of stratigraphy which focuses on correlating and assigning relative ages of rock strata by using the fossil assemblages contained within them. Usually the aim is correlation, demonstrating that a particular horizon in one geological section represents the same period of time as another horizon at some other section. The fossils are useful because sediments of the same age can look completely different because of local variations in the sedimentary environment. For example, one section might have been made up of clays and marls while another has more chalky limestones, but if the fossil species recorded are similar, the two sediments are likely to have been laid down at the same time.
Biostratigraphy originated in the early 19th century, where geologists recognised that the correlation of fossil assemblages between rocks of similar type but different age decreased as the difference in age increased. The method was well-established before Charles Darwin explained the mechanism behind it - evolution.
Ammonites, graptolites, archeocyathids, and trilobites are index fossils that are widely used in biostratigraphy. Microfossils such as acritarchs, chitinozoans, conodonts, dinoflagellate cysts, pollen, spores and foraminiferans are also frequently used. Different fossils work well for sediments of different ages; trilobites, for example, are particularly useful for sediments of Cambrian age. To work well, the fossils used must be widespread geographically, so that they can occur in many different places. They must also be short lived as a species, so that the period of time during which they could be incorporated in the sediment is relatively narrow. The longer lived the species, the poorer the stratigraphic precision, so fossils that evolve rapidly, such as ammonites, are favoured over forms that evolve much more slowly, like nautiloids. Often biostratigraphic correlations are based on a fauna, not an individual species, as this allows greater precision. Further, if only one species is present in a sample, it can mean that (1) the strata were formed in the known fossil range of that organism; (2) that the fossil range of the organism was incompletely known, and the strata extend the known fossil range. For instance, the presence of the fossil Treptichnus pedum was used to define the base of the Cambrian period, but it has since been found in older strata.