*** Welcome to piglix ***

Biological immortality


Biological immortality is a state in which the rate of mortality from senescence is stable or decreasing, thus decoupling it from chronological age. Various unicellular and multicellular species, including some vertebrates, achieve this state either throughout their existence or after living long enough. A biologically immortal living being can still die from means other than senescence, such as through injury or disease.

This definition of immortality has been challenged in the Handbook of the Biology of Aging, because the increase in rate of mortality as a function of chronological age may be negligible at extremely old ages, an idea referred to as the late-life mortality plateau. The rate of mortality may cease to increase in old age, but in most cases that rate is typically very high. As a hypothetical example, there is only a 50% chance of a human surviving another year at age 110 or greater.

The term is also used by biologists to describe cells that are not subject to the Hayflick limit on how many times they can divide.

Biologists chose the word "immortal" to designate cells that are not subject to the Hayflick limit, the point at which cells can no longer divide due to DNA damage or shortened telomeres. Prior to Leonard Hayflick's theory, Alexis Carrel hypothesized that all normal somatic cells were immortal.

The term "immortalization" was first applied to cancer cells that expressed the telomere-lengthening enzyme telomerase, and thereby avoided apoptosis—i.e. cell death caused by intracellular mechanisms. Among the most commonly used cell lines are HeLa and Jurkat, both of which are immortalized cancer cell lines. HeLa cells originated from a sample of cervical cancer taken from Henrietta Lacks in 1951. These cells have been and still are widely used in biological research such as creation of the polio vaccine, sex hormone steroid research, and cell metabolism. Normal stem cells and germ cells can also be said to be immortal (when humans refer to the cell line).


...
Wikipedia

...