Biogasoline is gasoline produced from biomass such as algae. Like traditionally produced gasoline, it contains between 6 (hexane) and 12 (dodecane) carbon atoms per molecule and can be used in internal-combustion engines. Biogasoline is chemically different from biobutanol and bioethanol, as these are alcohols, not hydrocarbons.
Companies such as Diversified Energy Corporation are developing approaches to take triglyceride inputs and through a process of deoxygenation and reforming (cracking, isomerizing, aromatizing, and producing cyclic molecules) producing biogasoline. This biogasoline is intended to match the chemical, kinetic, and combustion characteristics of its petroleum counterpart, but with much higher octane levels. Others are pursuing similar approaches based on hydrotreating. And lastly still others are focused on the use of woody biomass for conversion to biogasoline using enzymatic processes.
BG100, or 100% biogasoline, can immediately be used as a drop-in substitute for petroleum gasoline in any conventional gasoline engine, and can be distributed in the same fueling infrastructure, as the properties match traditional gasoline from petroleum. Dodecane requires a small percentage of octane booster to match gasoline. Ethanol fuel (E85) requires a special engine and has lower combustion energy and corresponding fuel economy.
But due to biogasoline's chemical similarities it can also be mixed with regular gasoline. You can have higher ratios of biogasoline to gasoline and not have to modify the vehicles engine unlike ethanol.
Biogasoline is created by turning sugar directly into gasoline. In late March 2010, the world’s first biogasoline demonstration plant was started in Madison, WI by Virent Energy Systems, Inc. Virent discovered and developed a technique called Aqueous Phase Reforming (APR) in 2001. APR includes many processes including reforming to generate hydrogen, dehydrogenation of alcohols/hydrogenation of carbonyls, deoxygenation reactions, hydrogenolysis and cyclization. The input for APR is a carbohydrate solution created from plant material, and the product is a mixture of chemicals and oxygenated hydrocarbons. From there, the materials go through further conventional chemical processing to yield the final result: a mixture of non-oxygenated hydrocarbons that the claimed was cost-effective. These hydrocarbons are the exact hydrocarbons found in petroleum fuels which is why today’s cars do not need to be altered to run on biogasoline. The only difference is in origin. Petroleum based fuels are made from oil, and biogasoline is made from plants such as beets and sugarcane or cellulosic biomass which would normally be plant waste.