*** Welcome to piglix ***

Binomial Distribution

binomial
Probability mass function
Probability mass function for the binomial distribution
Cumulative distribution function
Cumulative distribution function for the binomial distribution
Notation B(n, p)
Parameters nN0 — number of trials
p ∈ [0,1] — success probability in each trial
k ∈ { 0, …, n } — number of successes
pmf
CDF
Mean
Median or
or
Variance
Skewness
Ex. kurtosis
Entropy
in . For , use the natural log in the log.
MGF
PGF
Fisher information

(for fixed )

In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent yes/no experiments, each of which yields success with probability p. A success/failure experiment is also called a Bernoulli experiment or Bernoulli trial; when n = 1, the binomial distribution is a Bernoulli distribution. The binomial distribution is the basis for the popular binomial test of statistical significance.

The binomial distribution is frequently used to model the number of successes in a sample of size n drawn from a population of size N. If the sampling is carried out without replacement, the draws are not independent and so the resulting distribution is a hypergeometric distribution, not a binomial one. However, for N much larger than n, the binomial distribution remains a good approximation, and widely used.

In general, if the random variable X follows the binomial distribution with parameters n ∈ ℕ and p ∈ [0,1], we write X ~ B(np). The probability of getting exactly k successes in n trials is given by the probability mass function:


...
Wikipedia

...