In algebra, the Binet–Cauchy identity, named after Jacques Philippe Marie Binet and Augustin-Louis Cauchy, states that
for every choice of real or complex numbers (or more generally, elements of a commutative ring). Setting ai = ci and bj = dj, it gives the Lagrange's identity, which is a stronger version of the Cauchy–Schwarz inequality for the Euclidean space .
When n = 3, the first and second terms on the right hand side become the squared magnitudes of dot and cross products respectively; in n dimensions these become the magnitudes of the dot and wedge products. We may write it
where a, b, c, and d are vectors. It may also be written as a formula giving the dot product of two wedge products, as
In the special case a = c and b = d, the formula yields