*** Welcome to piglix ***

Binary compounds of hydrogen


Binary compounds of hydrogen are binary chemical compounds containing just hydrogen and one other chemical element. By convention all binary hydrogen compounds are called hydrides even when the hydrogen atom in it is not an anion. These hydrogen compounds can be grouped into several types.

Binary hydrogen compounds in group 1 are the ionic hydrides (also called saline hydrides) wherein hydrogen is bound electrostatically. Because hydrogen is located somewhat centrally in an electronegative sense, it is necessary for the counterion to be exceptionally electropositive for the hydride to possibly be accurately described as truly behaving ionic. Therefore, this category of hydrides contains only a few members.

Hydrides in group 2 are polymeric covalent hydrides. In these, hydrogen forms bridging covalent bonds, usually possessing mediocre degrees of ionic character, which make them difficult to be accurately described as either covalent or ionic. The one exception is beryllium hydride, which has definitively covalent properties.

Hydrides in the transition metals and lanthanides are also typically polymeric covalent hydrides. However, they usually possess only weak degrees of ionic character. Usually, these hydrides rapidly decompose into their component elements at ambient conditions. The results consist of metallic matrices with dissolved, often stoichiometric or near so, concentrations of hydrogen, ranging from negligible to substantial. Such a solid can be thought of as a solid solution and is alternately termed a metallic- or interstitial hydride. These decomposed solids are identifiable by their ability to conduct electricity and their magnetic properties (the presence of hydrogen is coupled with the delocalisation of the valence electrons of the metal), and their lowered density compared to the metal. Both the saline hydrides and the polymeric covalent hydrides typically react strongly with water and air.

It is possible to produce a metallic hydride without requiring decomposition as a necessary step. If a sample of bulk metal is subjected to any one of numerous hydrogen absorption techniques, the characteristics, such as luster and hardness of the metal is often retained to a large degree. Bulk actinoid hydrides are only known in this form. The affinity for hydrogen for most of the d-block elements are low. Therefore, elements in this block do not form hydrides (the hydride gap) under standard temperature and pressure with the notable exception of palladium. Palladium can absorb up to 900 times its own volume of hydrogen and is therefore actively researched in the field hydrogen storage.


...
Wikipedia

...